In Vitro Kinetics of Ribosomal Incorporation of Unnatural Amino Acids
نویسنده
چکیده
Wang, J. 2016. In Vitro Kinetics of Ribosomal Incorporation of Unnatural Amino Acids. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1369. 55 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9563-3. Ribosomal incorporation of unnatural amino acids (AAs) into peptides or proteins has found broad applications in studying translation mechanism, discovering potential therapeutics, and probing protein structure and function. However, such applications are generally limited by the low incorporation efficiencies of the unnatural AAs. With in vitro kinetics studies using a purified E. coli translation system, we found that the natural N-alkyl AA carrier, tRNA, could hasten the incorporation of N-methyl AAs. Also, the incorporation rate increased remarkably with increasing pH in the range of 7 to 8.5, suggesting the rate was limited by peptidyl transfer, not accommodation. Competition experiments revealed that several futile cycles of delivery and rejection of the A site N-methyl AA-tRNA were required per peptide bond formation, and the incorporation yield could be increased by using a higher Mg concentration. Kinetics of ribosomal polymerization, using AA-tRNA substrates prepared from the standard N-NVOC-AA-pdCpA chemoenzymatic ligation method, clarified that the inefficiency of incorporation was due to the penultimate dC. This dC prompted faster peptidyl-tRNA dropoff, leading to loss of processivities along consecutive incorporations. Circumventing the penultimate dC by using our N-NVOC-AA-pCpA chemoenzymatic ligation or the flexizyme charging method to prepare the AA-tRNA substrates was able to improve the efficiencies of ribosomal consecutive incorporations of unnatural AAs. By studying the translation steps after aminoacylation of tRNA, the favored carrier for unnatural AAs in vivo, we demonstrated surprisingly slow biphasic kinetics of tRNAmediated amber suppression in vitro. The fast phase amplitude increased with increasing EF-Tu concentration, allowing measurement of Kd of EF-Tu binding. Results revealed ~25-fold weaker EF-Tu binding affinity of the tRNA body than that of E. coli tRNA. The fast phase rate was ~30-fold slower than that of native substrates, and this rate was limited by the ~10-fold less efficient AA-tRNA:EF-Tu:GTP ternary complex binding to the ribosome. The incorporation was so slow that termination by RF2 mis-reading of the amber codon became a significant competing reaction. The processivity was unexpectedly impaired as ~40% of the dipeptidyltRNA could not be elongated to tripeptide. This new overall understanding opens a window of improving unnatural AA incorporation both in vitro and in vivo.
منابع مشابه
Ribosomal synthesis of unnatural peptides.
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a recon...
متن کاملMethod Development for Efficient Incorporation of Unnatural Amino Acids
Method Development for Efficient Incorporation of Unnatural Amino Acids Paul David Harris The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in ...
متن کاملAn Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides
BACKGROUND The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into p...
متن کاملRibosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids.
A versatile method for orchestrating the formation of side chain-to-tail cyclic peptides from ribosomally derived polypeptide precursors is reported. Upon ribosomal incorporation into intein-containing precursor proteins, designer unnatural amino acids bearing side chain 1,3- or 1,2-aminothiol functionalities are able to promote the cyclization of a downstream target peptide sequence via a C-te...
متن کاملUnnatural Protein Engineering: Producing Proteins with Unnatural Amino Acids
Less than a decade ago, the ability to generate proteins with unnatural modifications was a Herculean task available only to specialty labs. Recent advances make it possible to generate reasonable quantities of protein with unnatural amino acids both in vitro and in vivo . The combination of solid-phase peptide synthesis and enzymatic or chemoselective ligation now permits construction of entir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016